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Abstract

Item response theory (IRT) models have been used extensively to address

educational measurement and psychometric concerns pertaining to a host of areas

such as differential item functioning, equating and computer-adaptive testing.

The many advantages of IRT models (e.g., item and ability parameter invariance),

have contributed to their use in a wide number of areas by practitioners and

researchers alike.

Another approach which is currently gaining popularity in educational

measurement is the one that treats item response theory as a special case of

nonlinear factor analysis (NLFA) . Several authors have shown that these mcdels

are mathematically equivalent (Balassiano & Ackerman, 1995a; 1995b; Goldstein &

Wood, 1989; Knol & Berger, 1991; McDonald, 1967; 1985; 1989; in press) . It would

therefore appear reasonable to make use of NLFA models to examine a multitude of

educational measurement problems which had been, until quite recently, looked at

solely from an IRT perspective.

The purpose of this paper is twofold:

First, to provide a brief overview of some of the research that has

examined the relationship between IRT and NLFA;

Second, to outline three NLFA models, emphasizing their major strengths and

weaknesses. More precisely, MdDonald' s (1967; 1982b) polynomial approximation to

a normal ogive model, Christof fersson' s (1975) / Muthen' s (1984) factor analytic

model for dichotomous variables as well as Bock and Aitkin' s (1981) /Bock, Gibbons

and Muraki ' s (1988) full- information factor analytic model, will be summarized.
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Introduction

Over the past three decades, the educational measurement and

psychometric literatures have been replete with studies focusing on item

response theory (IRT) models. The numerous textbooks that have been written

centering primarily ansi, in some instances, exclusively on IRT attest to the

importance of these models in the development and analysis of tests and items

(Baker, 1992; Hambleton, 1983; 1989; Hambleton & Swaminathan; 1985; Hulin,

Drasgow, & Parsons, 1983, Warm, 1978). The use of IRT models has been

widespread in both testing organizations and departments of education for a

variety of purposes such as item analysis (Baker, 1985; Mislevy & Bock, 1990;

Wingersky, Patrick, & Lord, 1991; Thissen, 1993), score equating (Cook &

Eignor, 1983; Lord, 1977; 1980; 1982; Petersen, Kolen, & Hoover, 1989; Skaggs

& Lissitz, 1986), differential item functioning (Thissen, Steinberg, & Wainer,

1993) and computer adaptive testing (Hambleton, Zaal, & Pieters, 1993;

Kingsbury & Zara, 1991; Wainer et al., 1990), to name a few. The many

properties of IRT models, among them, that "sailiple-free" item parameter

estimates and "test-free" ability estimates can be obtained, have generated

considerable interest in their use to solve a host of measurement-related

problems.

Another approach which is currently gaining popularity in educational

measurement is the one that treats item response theory as a special case of

nonlinear factor analysis (NLFA). Several authors have shown that these models

are mathematically equivalent (Balassiano & Ackerman, 1995a; 1995b; Goldstein

& Wood, 1989; Knol & Berger, 1991; McDonald, 1967; 1985; 1989; in press).

Muthlen (1978, 1983, 1984) has also demonstrated that commonly used models in

IRT (e.g. the two-parameter normal ogive model) are really specific cases of a

more general factor analytic model for categorical variables with multiple

indicators (i.e. response categories). McDonald (1982b), starting from

Spearman's common factc model, also shows that IRT models are a special case

of NLFA and provides a general framework which includes unidimensional/

4
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multidimensional, linear/nonlinear models as well as dichotomous and

polychotomous models.

Takane and De Leeuw (1987) have also established that IRT models are

mathematically equivalent to NLFA. These authors have provided a systematic

series of proofs that show the equivalence of these models with dichotomous as

well as polychotomous item responses.

Thus, it appears as though IRT and NLFA models represent two equivalent

formulations of a more general latent trait model. Indeed, the two terms are

often used interchangeably. For example, the model proposed by Bock and Aitkin

(1981) has been synonymously referred to as full-information factor analysis

(Bock, Gibbons, & Muraki, 1988) and multidimensional IRT (McKinley, 1988).

Given the equivalence of IRT and NLFA, it would appear reasonable to make use

of the latter models to examine a multitude of educational measurement

problems which had been, until quite recently, looked at solely from an IRT

perspective. Several nonlinear factor analytic models, with potential

applications to measurement and psychometric issues, have been proposed in the

literature (Bock & Aitkin, 1981; Bock, Gibbons, & Muraki, 1988; Bock &

Lieberman, 1970; Christoffersson, 1975; McDonald, 1967; 1982b; Muthen, 1978;

1984).

The first part of this paper will consist in providing a brief overview

of some of the research that has examined the relationship between common IRT

models and NLFA.

Three NLFA models that have been used to address measurement related

issues will be presented in the second part of this paper. Specifically,

McDonald's (1967; 1982b) polynomial approximation to a normal ogive model,

Christoffersson's (1975)/ Muthen's (1978) factor analytic model for

dichotomous variables as well as Bock and Aitkin's (1981)/Bock, Gibbons and

Muraki's (1988) full-information factor analytic model, will be summarized. In

addition, some of the strengths and weaknesses of the models will be

highlighted.
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The relationship between common IRT models

and nonlinear factor analysis

A considerable body of research has been dedicated to examining the

relationship between common IRT models, e.g., logistic and normal ogive

functions, and NLFA (Bartholomew, 1983; Goldstein & Wood, 1989; Knol & Berger,

1991; McDonald, 1967; 1989; Takane & De Leeuw, 1987).

Bartholomew (1983) has provided a general latent trait model on which

several IRT as well as factor analytic functions for dichotomous variables are

founded. The author states that common factor analytic models, such as those

proposed by Bock and Aitkin (1981), Christoffersson (1975) and Muthen (1978)

are special cases of this general latent trait model. The model is of the

form,

q

G(Tci (y) ) =ccio+E a , i=1,2...,p. (1)

Bartholomew states that the models outlined by Bock and Aitkin (1981),

Christoffersson (1975) and Muthen (1978) use the probit function,

(G(u)=0-1(u)} for both G and H. Lord and Novick (1968), whose discussion on

IRT models is restricted to the q=1 (i.e., unidimensional) case, treat yj, as

parameters and use the logit for G and the probit for H. "Translated" in the

unidimensional IRT vernacular, the terms in equation 1 would correspond to the

following:

G(ni)= the response function outlining the probability c

obtaining a correct response to item i;

a vector of ability (in this case, a scalar, given

that q=1);

a parameter related to the difficulty of item i;

a parameter related to the discrimination of item i ,n

latent trait j;

The density function for a given latent trait j.

(y) =

aio=

ai;

H (yi) =
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Fraser and McDonald (1988) and McDonald (1981; in press) also examined

the relationship between common item response functions (IRF) and NLFA.

McDonald (1994) states that the unidimensional normal ogive model given by,

P(Yi=llei) =ci+ (1-ci) N[ai(ei-bi) , (2)

where,

0i= the latent variable;

bi = the 0 value at the point of inflexion of the item

response function;

the slope of the IRF at its point of inflexion;

ci = the lower asymptote value of the IRF;

N {.} = the normal distribution function;

can be re-expressed using the latent trait parameterization as,

P(Yi=1101) =ci+ , (3)

fio = -aibi and f, = ai; f corresponding to the factor loading of factorwith

1 on item i. Function (3) can be generalized to the multidimensional case,

P (yi=110.) =ci+ (1-ci) fio+f2ial (4)

Fraser and McDonald (1988) and McDonald (1981; in press) also

demonstrated that the latent trait model shown in (4) could be derived (c.f.

Christoffersson, 1975) in the form,

p(i=i la) (i-ci) N[ tio+hilumi] (5)

The parameters in models (4) and (5) are related by,
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tio=fid (i+fiipli) 1/2,

hi =f/ (i+liipli) 1/2,

2 /

=1 / Si ,

sl = (1.1.41301..d1/2,

where (i=1, , m) and P is the m x m matrix containing the correlations

among the dimensions (assuming the latent traits have been standardized). A

detailed discussion of this relationship is found in McDonald (1985).

Knol and Berger (1991) examined the relationship between several NLFA

models and logistic IRT functions. More precisely, the authors focused their

attention on comparing Bock and Aitkin's (1981) full-information factor

analytic model and McDonald's (1967) polynomial approximation to a normal

ogive model, to the two-parameter logistic IRT function.

Bock and Aitkin's model (1981) uses a marginal maximum likelihood

procedure in the estimation of item parameters. In the model, X

47)' corresponds to a random response pattern vector to n binary variables,

where each .70i=1,...,n) value is defined as 1, if the item is correctly

answered and 0, if incorrectly answered. Under the assumption of local

independence, the marginal probability of the response vector X = x is given

by,

P(X=x) =ill [pi (0) ] [1-pi (0)
1- x;9'(8)

de, (6)

where pi(6) corresponds to the item characteristic function of item i, g(0) is

the density function of the latent m-component random vector of abilities 0,

and the integration is taken over the entire multidimensional ability space.

6
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Knol and Berger (1991) state that if 0 is assumed to be multivariate

normal distributed with a mean equal to 0 and a covariance matrix I, the

multidimensional two-parameter normal ogive model ICF for item i (i.1,...,n)

is given by,

p1 (0) =F(a/10-f31) , (7)

where,

ai = the m x 1 vector of item discrimination parameters;

Iii = the item difficulty parameter;

F(.)= the cumulative standard normal distribution.

Knol and Berger (1991) also examined the relationship between McDonald's

polynomial approximation to a normal ogive model (McDonald, 1967; 1982b) and

the two-parameter logistic IRT function. McDonald, using harmonic analysis,

proposed a NLFA model that is based on the pairwise joint-proportion of the

item responses. The ICFs for this model are approximated by a third degree

Hermite-Tchebycheff polynomial. The pairwise probabilities nib = P(Xj=1, Xj=1)

are estimated by minimizing the unweighted least-squares function,

f(A,P)=EE LPij-ftij(apPiiaj,Dj)]2, (8)

where,

A = an)', described in (7);

= ..., P,,) ' , also defined in (7)

the observed joint-proportions.

As Knol and Berger (1991) state, the relationship between the logistic

distribution function L(.) and the cumulative standard normal distribution

function F(.) given by (Mood, Graybill, & Boes, 1974),

IF( z) -L (1 . 7 z) I < . 01 (9)

for all z (Haley, 1952), makes it possible to approximate the normal ogive ICF

by the logistic ICF,



Nonlinear FA and its relationship to IRT

9

[1.7 (cciiI3j-11i)
'pi (Of) = L [1 .7 (txiej-Pi) ]

1 + e [1.7 (cei°1-13i)

(10)

Takane and De Leeuw (1987) also showed that common IRT models and NLFA

models are formally equivalent. These authors have provided a proof that

demonstrates the equivalence of Bock and Aitken's (1981) full-information

factor analytic model to Christoffersson's(1975)/Muthen's(1984) generalized

least-squares factor analytic model for dichotomous variables. This proof is

presented in Appendix A for the reader's benefit.

Summary

The purpose of the first part of the paper was to briefly outline past

research that has investigated the relationship between common IRT models and

NLFA. These studies have shown that logistic and normal ogive functions are

formally equivalent to McDonald's (1967; 1982b) polynomial approximation to a

normal ogive model, Christoffersson's (1975)/MULhen's (1984) factor analytic

model for dichotomous variables, and the full-information factor analytic

approach advocated by Bock and Aitkin (1981) as well as Bock, Gibbons and

Muraki (1988). Hence, based on the IRT-NLFA relationship, it would appear that

these latter models might provide a useful framework with which common

measurement and psychometric problems can be addressed. A summary of these

three NLFA models is provided in the next section of the paper, emphasizing

some of the advantages and limitations of each approach for the practitioner.

A polynomial approximation to a normal ogive model

McDonald (1967; 1982a; 1982b, 1989; in press) and McDonald and Ahlawat

(1974) have provided a general framework that enables the organization of

existing unidimensional as well as multidimensional IRT models based on a more

general NLFA approach. Specifically, generalizing from Spearman's common

factor model, McDonald (1982b) has presented three classes of models which can
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be used in educational measurement, that is,

i. models that are strictly linear in both their coefficients and

latent traits;

ii. models that are linear in their coefficients but not in their

latent traits;

iii. models that are strictly nonlinear.

McDonald's distinctive contribution to the area, however, lies with the

second class of models presented. McDonald and Ahlawat (1974) have proposed a

group of regression functions that are linear in their coefficients (i.e.

their item parameters) but nonlinear in their latent traits, of the general

form,

t s

fi(xl,...,xt) =a jo+E E aiiph (xi) (1=1, ...n) ,
1=1 p=1

where,

= a function that represents the probability

that an examinee with latent trait values

will correctly respond to the

ith binary item;

An intercept parameter of the regression

function for item i;

ailP = A regression coefficient for item i on

latent trait 1 of the p-th polynomial

degree;

4,(x0 = a general polynomial function of the form,

f110 +fi2 (12)

An IRT model which describes the probability that a randomly selected
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examinee j of ability 0; will correctly answer an item is the two-parameter

normal ogive model. The item characteristic curve (ICC) for the model is given

by,

ZiJ

Pi (Ey -f 1 _t2/2e dt,
Nrlif

(13)

where t is the normal deviate. One common parameterization of Zij for item i

is,

Z ij =a i (6j-b1) (14)

where 4 and ai have been previously defined in (2). McDonald (1967), using

harmonic analysis, has shown that the normal ogive model could also be

approximated as closely as desired by a polynomial series of the general form,

fi0 +f2.1034-fi2027+. fik131.;
(15)

whE e, fik is the factor loading of factor k on item i.

The unweighted least squares (MS) function that is minimized to enable

the estimation of the pairwise probabilities = P(XZ =1, Xj=1) is,

f(A,p)=EE [pi; -ftij(a/iPiiapPJ)12, (16)
/<;

with A, p and pi; previously defined in (7) and (8). As was stated earlier,

the ICFs for this model are approximated by a third-degree Hermite-Tchebycheff

polynomial. A few advantages and limitations of the model are presented in the

next section of the paper.
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Advantages and limitations of McDonald's polynomial approximation to a normal

ogive model

As was previously stated, McDonald's (1967) approach to NLFA uses ULS

estimation of the model parameters. ULS estimation is quite economical as

compared to generalized least-squares and maximum likelihood procedures and

hence has the practical advantage of allowing for the analysis of tests with a

fairly large number of items and/or dimensions.

Also, McDonald's model has been implemented in the computer program

NOHARM (Fraser & McDonald, 1988). The program enables the user to fit

confirmatory or exploratory unidimensional and multidimensional models to item

response matrices. The output from a typical NOHARM run includes the results

for the latent trait parameterization, the common factor model

reparameterization as well as, in the unidimensional case, Lord's

parameterization (i.e., a vector of discrimination parameters, a, and

difficulty parameters, b, are provided). In addition, a residual joint-

proportions matrix is included in the output which can be useful to assess the

fit of a given model.

However, the greater degree of computational efficiency associated with

the ULS estimation procedure is achieved at the sacrifice of information

(Mislevy, 1986). That is, only the information in the one-way marginals

(percent-corrects) and two-way marginals (joint percent-corrects) is utilized

by NOHARM in the estimation of parameters, thus explaining why it is often

referred to as a "limited" or "bivariate" factor analytic method. However,

McDonald (in press) and Muthen (1978) have suggested that one should not lose

too much information in the absence of higher-order marginals. Also, Knol and

Berger (1991) compared NOHARM parameter estimates to those obtained based on a

full-information factor analytic model (i.e., using TESTFACT; Wilson, Wood &

Gibbons, 1987) and generally found only slight differences between the two

procedures with respect to their ability in recovering (simulated) factor

analytic parameters. However, these findings were based on a limited number of

Un
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replications (10) and should be interpreted cautiously. Nonetheless, from a

practical perspective, it would seem that there might not be much to be gained

in using full-information methods. Balassiano and Ackerman (1995b) have also

shown that the overall performance of NOHARM, with respect to recovering

simulated item parameter values, was satisfactory, even with small sample

sizes (N = 200).

Another limitation of the model, again attributable to the ULS

estimation procedure, is the absence of standard errors for the parameter

estimates and a fit statistic for the given model. However, McDonald (1994)

and Balassiano and Ackerman (1995b) have suggested criteria (e.g., the inverse

of the square root of the sample size) that may be used as approximate

standard errors for the parameters of the model. Also, two approximate x2

statistics, based on the residuals obtained after fitting a NLFA (NOHARM)

model to an item response matrix, were proposed and investigated by De

Champlain (1992) and Gessaroli and De Champlain (1995). Results obtained with

a variety of simulated data sets showed that the approximate x2 statistics

were quite accurate in correctly determining the number of factors underlying

simulated item responses. This would suggest that these procedures might be

useful as practical guiaes for the assessment of model fit, even though they

are perhaps not the theoretically preferred statistics due to the ULS

estimation method on which they're based. However, further research needs to

be undertaken in order to evaluate the behavior of these approximate x2 in a

larger number of conditions before making any definite statements about their

usefulness.

Finally, some authors have no* 1 that a problem with McDonald's model is

the absence of an index that would indicate the appropriate number of

polynomials to retain in a series (Hambleton & Rovinelli, 1986). Findings

pertaining to this question, however, seem to indicate that terms beyond the

cubic can generally be dismissed (McDonald, 1982b, Nandakumar, 1991).

14
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A factor analytic model for dichotomous variables

Christoffersson (1975) and Mtthen (1978) proposed a factor analytic

model for dichotomous variables in which it is postulated that response

variables Xi are accounted for by the latent continuous variables Yi and

threshold variables Ai such that,

Xi = 1, if Yi > Ai

Xi = 0, otherwise,

where,

Y=A8-1-E, (17)

and Y , 40'. The model outlined in (29) is identical to the common

factor model with the exception that Y is unobserved. Assuming that

8 - MVN(0,I), E MVN(0,12), where 72 is a diagonal matrix of residual

variances, and cov(0,E) = 0, the covariance matrix E among the Y latent

variables can expressed as,

Therefore,

E Y) . (18)

Y-mVN(0, ACIA4412) , (19)

The probability of a correct response based on Christoffersson's model is

given by,

0 0

P(y1 =1) f 1 e--2/2dx.
hi

(27L) h/2

The probability of correctly answering a pair of items is given by,

C 0

1 xE1 x/2P(371=1, Y =1) =1 f -te dx.
2nIE ij.11/2

(20)

(21)

Christoffersson (1975), using the tetrachoric expansion (Kendall, 1941) re-

14
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P(yi=1, yi=1) = E at ts(h1)T5(hi),
s=o
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(22)

where is is the s-th tetrachoric function. Given the rapid convergence of the

series, Christoffersson (1975) states that we may cut the expansion after L

terms and use,

/3(y1 =1, yi=1)=E at ts(hi)t,(h.3 ).
s=0

(23)

The parameters of Christoffersson's (1975) model can be estimated using

a generalized least-squares (GLS) estimation procedure that minimizes the fit

function,

F= (p-P)1,5;,1 (p-P) , (24)

where,

Se= a consistent estimator of Ee, the residual covariance matrix;

P= a vector of expected item proportions correct Pi and joint item

proportions Pjk;

p= a vector of observed item proportions correct pi and joint item

proportions pjk;

Muthen (1978; 1983; 1984; 1988) has proposed a GLS estimator that is

equivalent to that outlined by Christoffersson (1975) but computationally more

efficient. According to MUth.en (1978), the parameters of the factor analytic

model for dichotomous variables can be estimated by minimizing the weighted

least-squares fit function,

1F= (s-a) IWil (s-u) ,

where,

a= Population threshold and tetrachoric correlation values;

s= Sample estimates of the threshold and tetrachoric correlation

I rl
U

(25)
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values;

Wa= A consistent estimator of the asymptotic covariance matrix of s,

multiplied by the total sample size.

This approach, also referred to as GLS estimation using a full-weight

matrix approach (Nilathein, 1988), is asymptotically equivalent to

Christoffersson's solution and slightly less demanding in terms of

computational requirements. It is referred to as a full-weight matrix approach

because, as Muth-en (1988) states, the GLS estimator utilizes a weight matrix

of size p* x p *, where g* corre3ponds to the total number of elements in the s

vector.

Advantages and limitations of Christoffersson's / Muthen's factor analytic

model for dichotomous variables

The GLS estimation procedure, unlike ULS, utilizes not only terms from

the one-way and two-way margins but also from the three-way and four-way

margins, that is, the joint proportions correct for three and four items taken

at the same time. As Mislevy (1986) states, the use of a greater amount of

information in the estimation procedure is especially advantageous when one

attempts to extract more from the data, that is, with solutions that contain

fewer items, examinees or more factors (with other conditions held constant).

Also, statistical tests of model fit are readily available. The F

function minimized in the GLS solution (c.f. equations 33 + 34) asymptotically

fol]ows a chi-square distribution, with df = k(k-1)/2 t, where k is equal to

the number of items and t, the number of parameters estimated in the model. In

addition, standard errors for the parameters estimated in the model can be

obtained quite easily.

Finally, Muth6n's solution is incorporated in the computer program

LISCOMP ( Muthen, 1988). As was the case with NOHARM (Fraser & McDonald, 1988),

LISCOMP (MUthen, 1988) enables the user to fit both exploratory and

confirmatory unidimensional or multidimensional models. Also, the output from
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a typical LISCOMP run contains the common factor model parameter estimates and

standard errors as well as a residual correlation matrix and a chi-square

statistic which allows the user to assess the degree of fit of a given model

or competing models.

However, the GLS estimation is computationally very intensive. Although

Mtthen's (1978) solution is more efficient than Christoffersson's (1978), the

procedure, as implemented in LISCOMID (Muthen, 1988), is still impractical

using a personal computer with tests containing more than 25 items (Mislevy,

1986; Muthen, 1988).

Also, though GLS makes use of more information to fit the ona- and two-

way margins than does ULS, it still ignores higher level interactions and, in

that sense, does not fully utilize all of the available information. However,

as was the case for ULS estimation, it is quite possible that this loss of

information is inconsequential.

Full-information item factor analysis

Bock and Aitkin (1981) proposed, based, on the following m-factor model

(for dichotomous data),

Yji "-A 11°1_1.4 Ai262j1 I im(3mj e ji (26)

that an unobservable response process 17;.i for person j to item i is a linear

function of m normally distributed latent variables Oj = 02j, emi]

and factor loadings X11 = Aj. This latent response process, yji

is related to the binary (observed) item response xji through a threshold

parameter, y1 for item i, in the following fashion:

if then xji = 1,

if yji < Ti, then xji = 0.

The probability that examinee j with abilities ej = [0.0, 02j, ..., 0,0]

will correctly answer item i is given by the function,

IS
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P(xii=110j) =41 A.ikekj ai) ,
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(27)

where 0 corresponds to unit normal cumulative distribution and a, is the

standard deviation of the unobserved random variable a21 - N(0,020.

Bock and Aitkin (1981) proposed a marginal maximum likelihood MO

procedure to estimate the parameters in the model based on Dempster, Laird and

Rubin's (1977) EM algorithm. The threshold and factor loadings are estimated

so as to maximize the following function,

N!L =P(X) P1', i, 13;2 'r1.I

r2 r
S

i

(28)

where, rs is the frequency of response pattern s and PS is the marginal

probability of the response pattern b .sed on the item parameter estimates. The

function outlined in (27), with the MML parameter estimates by means of the EM

algorithm, is commonly referred to as full-information item factor analysis

(Bock, Muraki, & Gibbons, 1988) and has been ilic.aemented in the computer

program TESTFACT (Wilson, Wood, & Gibbons, 1987).

Advantages and limitations of Bock and Aitkin's (1981) /Bock, Gibbons and

One of the key advantages of full-information item factor analysis

(FIFA) is that it utilizes all available information in the estimation

procedure. Contrary to the two least-squares models previously outlined, which

are restricted to lower-order marginals, FIFA is based on the estimation of

item response vectors and hence uses all available information in the data.

Also, the procedure is implemented in the computer program TESTFACT

(Wilson, Wood, & Gibbons, 1987). The output from a TESTFACT analysis contains,

among other things, classical item statistics and factor analytic parameter

estimates as well as their associated standard errors. In addition, a

likelihood-ratio chi-square test is provided to help the user determine the
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fit of a ucdel, or of competing models.

However, the use of all information contained in the 2" item vectors,

where p is equal to the number of items, by FIFA requires that there should be

no empty cells which is usually not feasible unless some collapsing is done.

In addition, as Mislevy (1986) and Berger & Knol (1990) have noted, the G2

goodness-of-fit statistic computed by TESTFACT will be very unreliable with

data sets containing more than 10 items due to the small expected number of

examinees per cell. More precisely, Mislevy (1986) states that t'Ae

approximation to the chi-square distribution might be poor in this instance.

Wilson, Wood and Gibbons (1987) also caution against relying on the G2 fit

statistic when a large number of cells have expected frequencies near zero. In

that instance, the authors recommend using the G2 difference test (comparing

two specific models) given that it follows a chi-square distribution in large

samples, even in the presence of E. sparse frequency table.

Conclusion

IRT models have been used extensively in the past few decades not only

in the development and analysis of educational test items but also in a host

of other applications such as for the equating of alternate test forms and the

detection of differentially functioning items.

Several researchers have suggested, however, that common IRT models are

really specific cases of a more general NLFA model (Goldstein & Wood, 1989;

Knol & Berger, 1991; McDonald, 1967; in press; Takane & De Leeuw, 1987). The

research conducted by the latter authors clearly shows that familiar IRT

models, such as the normal ogive and logistic functions, can easily be

expressed with a factor analytic parameterization. The findings obtained in

these studies would therefore seem to suggest that NLFA might provide a useful

framework with which to address measurement-related issues that had been

primarily investigated using IRT models.

Three factor analytic models were briefly outlined.. More precisely,

4 . 0
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McDonald's (1967; 1982b) polynomial approximation to a normal ogive model,

Christoffersson's (1975)/Muthen's (1978) factor analysis model for dichotomous

variables and Bock and Aitkin's (1981)/Bock, Gibbons & Muraki's (1988) full-

information factor analytic model, were described. In addition, the major

strengths and weaknesses of each model were delineated. Based on this

information, are there any conditions that might dictate the use of one model

over another?

The main advantage associated with McDonald's polynomial approximation

to a normal ogive model, that is, the relative economy of the ULS estimator,

also constitutes its primary shortcoming-In other words, as Mislevy (1986)

stated, the higher degree of computational efficiency is achieved at the

sacrifice of information. The model utilizes lower-order marginals in the

estimation process and consequently ignores higher-order relationships among

the data. However, there is some empirical evidence to suggest that "limited-

information" factor analytic parameter estimates do not differ substantially

from those obtained using the theoretically sounder "full-information" method

as implemented in the computer program TESTFACT (Wilson, Wood, & Gibbons,

1987; Knol & Berger, 1991).

Also, the absence of standard errors for the estimated factor analytic

parameters and of a fit statistic to gauge the overall adequacy of a model,

are major disadvantages of McDonald's model, as implemented in the computer

program NOHARM (Fraser & McDonald, 1988). Nonetheless, approxim,,, standard

errors have been proposed as useful guides in assessing parameter estimation

accuracy (Balassiano & Ackerman, 1995b; McDonald, 1994). Also, two approximate

chi-square statistics, based on the residual matrix obtained after fitting an

m-factor model to an item response matrix using NOHARM (Fraser & McDonald,

1988) proved to be very accurate with respect to correctly identifying the

number of dimensions underlying simulated data sets in specific conditions. Of

course, these chi-square statistics are weak in their theoretical foundation

due to the fact that they're based on ULS estimation. However, Browne (1977)
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has indicated that in many cases, these chi-square statistics are formally

equivalent to those derived from a GLS estimation and that they differ only

slightly. Therefore, from a practical perspective, these approximate chi-

square statistics might be useful tools to those interested in fitting

McDonald's model to item response matrices.

The factor analytic model for dichotomous variables proposed by

Christoffersson (1975) and amended by Muthen (1978) is, from a theoretical

standpoint, superior to McDonald's approach in that the GLS estimation

procedure yields a valid chi-square goodness-of-fit statistic as well as

legitimate standard errors for the estimated parameters. Nonetheless, the

model is still based on "limited information" in that it ignores higher-level

interactions in the data. Also, the computational requirements of MUth.en's GLS

solution as implemented in LISCOMP (Muthen, 1988) are quite exacting: they

increase proportionally to the number of factors and with the fourth power of

the number of items. This led Mislevy (1986) to suggest that Muthen' solution

might be adopted with tests that have a relatively small item to factor ratio.

Finally, the full-information factor analytic model proposed by Bock and

Aitkin (1981) and Bock, Gibbons, an Muraki (1988) is, based on theoretical

grounds, the strongest of the approaches outlined, given that it does, as the

name implies, make use of all available information contained in the 2P item

response vectors. However, in most applications, the use of the full-

information is usually not feasible unless collapsing of cells is undertaken.

Also, the computational requirements associated with the MML estimation

procedure implemented in TESTFACT, increase geometri2ally with the number of

factors specified in the model but only linearly with the number of items and

response vectors. Hence, Mislevy (1986) advises using this procedure with

longer tests and more parsimonious models.

In summary, it would appear as though a greater number of empirical

studies should be undertaken to compare the various NLFA models with respect

to how accurately they can recover simulated parameter values, before making
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any definite recommendations as to which procedure should be favored given a

specific set of conditions, i.e., test length, sample size, factor model, etc.

It is possible that the theoretically sounder models, e.g., full-information

factor analysis, might not yield substantially more accurate parameter

estimates than methods that are based on lower-order marginals, e.g.,

McDonald's (1967; 1982b) and Muthem's (1978; 1988) approaches. There is some

preliminary evidence to support this claim (Boulet & Gessaroli, 1992; Gibbons,

1984; Knol & Berger, 1991). Some authors have even suggested that factor

loadings obtained from a linear factor analysis of phi and tetrachoric

correlation matrices did not differ noticeably from those derived using

LISCOMP (Muthen, 1988; Parry & McArdle, 1991) or TESTFACT (Wilson, Wood, &

Gibbons, 1987; Knol & Berger, 1991). However, more studies are needed in this

area to clearly identify the conditions in which one method might outperform

another.

In addition, the usefulness of these models in addressing common

measurement-related problems should be investigated. For example, LISCOMP

(Muthein, 1988) and TESTFACT (Wilson, Wood, & Gibbons, 1987) provide chi-square

goodness-of-fit statistics in order to aid the practitioner in determining

which model best accounts for the item response probabilities. Also, similar

fit statistics have been proposed to accompany McDonald's (1967; 1982b) NLFA

model (De Champlain, 1992; Gesaroli & De Champlain, 1995). Given that

unidimensionality of the latent ability space is one of the main postulates

underlying most IRT models, it would seem important to evaluate the degree of

accuracy with which each of these fit statistics is able to correctly identify

or reject this assumption under a variety of simulated conditions. Similarly,

it might be interesting to assess the degree of effectiveness of these fit

statistics in detecting violation of local independence. A frequent problem

that confronts practitioners is how to best model item response data that

contain sets that is, where several items refer to a common stem, e.g., a

reading comprehension passage. The factor analytic framework might provide the
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means of effectively dealing with local item dependence through items loading

on a secondary dimension, for example. The usefulness of the NLFA framework in

addressing these types of issues will be illustrated in the next three

presentations of this symposium.

An overview of the three symposium presentations

The first paper will be centered on outlining methods available for the

assessment of dimensionality that are based on NLFA. Examples of how to use

these procedures to test for specific dimensional structures will be

illustrated using data from a national testing program.

The next paper will compare the degree of accuracy of parameter

estimates when based on "limited-information" (NOHAM and "full-information"

(TESTFACT) factor analytic models for simulated unidimensional and

multidimensional data sets. In addition, the use of these methods will be

depicted with actual achievement test data.

The final paper will focus on explaining how the factor analytic

framework might be useful in dealing with local item dependence (LID).

Soecifically, the identification of LID u2in5 NLFA will once more be

illustrated with data from a national testing program. Also, methods of

obtaining "purified" estimates of reliability and standard errors of

measurement as well as ability (i.e., withcut LID contamination) will be

outlined.

It is hoped that these presentations will underscore the usefulness of

NLFA in addressing the above mentioned problems with actual achievement test

data and stimulate discussion with respect to these areas, thus hopefully

fostering future research.
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Appendix A

Takane and De Leeuw's (1987) IRT-NLFA proof

Let x = be a random vector of response patterns to n binary

items on a test. Each Xi is assigned a value of 1, if the examinee correctly

answers the item, or 0, if there is an incorrect response. Let a be an m-

component random vector of abilities (msn) with its density function denoted

by g(u). u is unobservable directly, but is assumed to follow a multivariate

normal distribution with mean 0 and covariance I (identity matrix); that is 1.1

Ar(0,(I)). The domain of a (denoted by U) is the multidimensional region

defined.by the direct product of (-00,..). In IRT, the two-parameter normal

ogive model specifies the marginal probability that x = x (Bock & Aitkin,

1981; Bock & Lieberman, 1970) as,

Pr (2=x) =f Pr (2=.x1u) g(u) du, (29)

where Pr(ii=x1u) is the conditional probability of observing response pattern x

given a = u. Also, it is assumed that,

n

Pr (2e=x111) =ll (p (u) ) x (1-P (u) )1-xi

(that is, local independence) with,

( U) =f alu+b4 )( Z) dz=4 (alu+b)

(30)

(31)

where (I) is the density function of the standard normal distribution and 0, the

normal ogive function (i.e., the cumulative distribution function of the

standard normal distribution).

On the other hand, Takane and De Leeuw (1987) state that in the factor

analytic model proposed by Christoffersson (1975), the marginal probability of

response pattern x is specified as,
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Pr (2=x) =f h (y) dy,

where R is the multidimensional region of integration and

31

(32)

k=c1I+E. (33)

Equation 15 corresponds to the common factor analytic model with C being

the matrix of factor loadings, u, the vector of factor scores (abilities in an

IRT framework) and a, the random vector of uniqueness components distributed

as N(O,Q2) where Q2 is further assumed to be diagonal (linear local

independence), and u and e are independent of each other. It follows that,

sr'-N(0, CC " +Q2) ,

(marginal distribution of .k) and

Jr-lu-N(cu, Q2) ,

(34)

(35)

(conditional distribution of k given u = u). The continuous random variables,

ir are dichotomized by .k. = 1, if k 2 ri or = 0, if ki < ri for i =1, ...,r_,

where ri is the threshold parameter for variable i. Therefore, R, the region

of integration above, is the multidimensional parallelopiped defined by the

direct product of intervals, R, = (r1, 00) if k1 =1 and R1...(-00,r0 if x1 = 0. Now

(11) including (12) and (13) is equivalent to (14) with ir defined in (15). We

first prove that (14) - (11). The authors show that from (14) we have

Pr (2=x) =f h (y) dy

R
(f

U
f (y1u) g (u) du) dy

fug ( ( f f ( I u) dy) du, (36)

where fliriu) is the conditional density of ir given 11=u. But because of (17),

it can be shown that,

3`'
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f (71u) dY=11 f fi (y ilu) dy

(i fi(yilu) dyi) xi (1-f fi(yilu) (37)
Li ri

C.U-r.
f (37 111) dYi-41( )fr: qi

for i = 1,...,n. In this instance 4g2i is the i-th diagonal element of Q2.

Equation (19) is thus equivalent to (13) by setting

and

ri

qi

(38)

(39)

(40)

for i = 1,...,n.

Takane and De Leeuw (1987) state that it might appear as though factor

analysis with c1, ri and ql(i=1,...,n) has more parameters than IRT with only

ai and bi(i=1,...n). However, according to the authors, when the data are

dichotomous, the variance of cannot be estimated due to the lack of

relevant information in the data, and thus, gql can be set to an arbitrary

value. Hence, the effective number of parameters is identical in both models.

In conclusion, the authors mention that the equivalence of marginal

probabilities in IRT and FA models holds approximately with logistic (IRT)

models also, as long the logistic distribution provides a good approximation

of the normal distribution (i.e. normal ogive).


